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rium the principal axes z;, x», %3 are taken, respectively,
parallel to orbital angular velocity (and hence perpendicular
to orbital plane), oppositely parallel to orbital linear velocity,
and radial outward from gravitational center. Orbital
angular perturbation thus enhances rotation & about z,
and if the orbital angular velocity is denoted by £, the total
moment of momentum is evaluated as

hy = (@ + 6 + @A + (B — B + Ly + 2BC (8

where principal axis unit vectors and moments of inertia A,
B, C have been introduced. Note that € is the only quantity
in parentheses which is not a small perturbation.

In order to evaluate the time derivative of hy, it is necessary
to account for the rotation of coordinate axes and unit
_vectors resulting from three effects: basic orbital motion £,
perturbation orbital motion 6’, and local rotations having
components &,3,y. When this is done, one obtains

dhy/dt = i;(& + Y4 +
L{BB + @4 — OB+ A4 — B — Oy} +
i3{5C + Q4 — Byy — Q4 — B —C)8} ()

showing that, within the present small-perturbation analysis,
orbital perturbation 6’ affects only the component of moment
of momentum which relates to motion parallel to the orbital
plane. (The same is, of course, not true for large-disturbance
motion.) When the right-hand side of Eq. (7) is equated to
external torque moment, one has an extended form of Euler’s
rigid body equations, appropriate for motion about a point
moving in space.

The gravitational torque moment M, vanishes for the
equilibrium orientation in space @ = 8 = v = 0 (indeed, this
is the condition that defines equilibrium under the action of
gravity gradient forces), and its value has been found for
small departures from this orientation to be?

My = —30(B — C)ady — 30%A — C)Bi. ®

It is evident from the form of.'(8) that the moment opposes
the displacement (static stability) when the two conditions
are satisfied:

B-C>0 A—-C>0 9

These indicate the only limitations imposed upon the mass
distribution and also show which space orientations 90° away
from stable equilibrium must be unstable (by interchanging
moments of inertia in pairs). The complete dynamic stability
is determined by Egs. (1) and (2), and the three scalar
equations obtained by substituting (8) and (9) into (5) are

Aa + 30¥(B — C)ae = — AF’ (10)
BB 4404 —O)B+QA—-B -0y =0 11
Cy+LUA—~By—QA—-B—-08=0 (12

for a rigid satellite of arbitrary mass distribution.

Discussion of the Motion

The feature of greatest interest in the present problem is
the fact that orbital perturbations affect only the « motions
representing oscillations parallel to orbital plane. This
occurs only through the term on the right-hand side of Eq.
(10), where one may properly regard it as a forcing function
for « motion, since the 8’ disturbance is found from Egs. (1)
and (2) without regard for Eqs. (10-12). The natural fre-
quency for this principal mode is seen at once to be

we = Q312[(B — C)/A]H2 (13)

In the case of greatest practical interest, with axial symmetry
such that A = B, it is seen that w, is never greater than 31/
times the orbital frequency Q. Since the forcing frequency
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given by Eq. (4) was seen to be equal to @ for circular orbits,
the natural « motion may be magnified appreciably by the
nearness to resonance. Oscillations about z; and z; axes,
given by 8 and v, evidently are not affected, since these are
coupled with each other but not with the « motion. It is
easy to show that, for these symmetric configurations already
described, B and y motions are 90° out of phase with each
other, and their frequency then is given by

wg =R -2 [l — (3C/44)]12 (14)

Configurations of greatest inherent (static) stability cor-
respond to mass concenfrations close to z; axis (hence very
small values of moment of inertia C); in this limit the fre-
quency given by (14) still is only slightly greater than e,
(the limiting values, in the ratio 3!/2:2, have been given
correctly by Domojilova and her co-workers in the Russian
literature?).

Conclusions

The characteristic rotational motions of gravity-gradient
satellites do not affect the stability or the period of oscillations
due to orbital disturbances, nor does the rotational motion
induce an orbital perturbation. The converse is not true:
orbital oscillations affect the rotational motion parallel to
orbital plane, and the interaction is in the nature of an
external foreing function that is sinusoidal. The closeness of
foreing frequency to system natural frequency w, will require
closer examination, particularly for eccentric orbits.

References

! Domojilova, L. M., “Notes on orbital dynamics,”’ Bull.
Moscow Univ. ITI, no. 2, 82 (1961); in Russian.

2 Michelson, I., “Librational dynamic-response limits of gravity-
gradient satellites,” ATAA J. 1, 216 (1963).

Bow Shock Correlation for Slightly
Blunted Cones

JeroLp H. KratmoN*
Boeing Company, Seattle, Wash.

HEN solving for the flow properties in the re-entry trail
of a hypersonic nose cone, it is in general necessary first
to solve for the detailed flow field in the vicinity of the body.
However, in some cases (e.g., for relatively short bodies at
high altitudes), and for the purposes of a parametric analysis,
it is sufficient merely to specify the shape of the bow shock.¢
Thus, if a simple but accurate correlation can be used, based
only on body geometry and freestream conditions, a considera-
able saving in expense and effort will result.
For highly blunted bodies (e.g., a hemisphere cylinder), the
Van Hise correlation? based on the blast wave analogy yields
good results. The equation for the shock shape in this case is

/1, = 1.424[Cp*(x/r,) 104 W

where r and z are cylindrical polar coordinates, with z meas-
ured along the body axis, whereas r, is the base radius of the
body, and Cp is its drag coefficient. It has been found, how-
ever, that, for slightly blunted conical nose shapes of low drag
coefficient, the Van Hise correlation is not satisfactory. For
these cases, a modified correlation has been formulated.

Small angle conical nose shapes, capped with a spherical
segment of radius ry, with r7/r, << 1, will be considered.

Received by ARS October 22, 1962.
* Research Specialist; Flight Technology Department, Aero-
Space Division.



FEBRUARY 1963

COMPUTER PROGRAM

——— ——— PRESENT CORRELATION

0 4 8 12 16 2 24 B 32 36
Fig. 1 Theoretical shock shape; v = 8.1139°, M. = 12,
rr = lin.
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Fig. 2 Theoretical shock shape; v =
rr = 1lin.
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Fig. 3 Theoretical shock shape; v = 14.547°, M. = 12,
rr = Yin.

Thus, the energy imparted to the flow in the vicinity of the
stagnation point will be due primarily to the drag coefficient
of the spherical segment Cpy. The shock shape in this region
is, therefore, given by a form similar to the Van Hise correla-
tion but based on the properties of the spherical cap:

r/rr cosy = 1.424[CDT°~5(9¢/7"T cosy) [0-46 (2)

Here v is the cone half angle. Modified Newtonian theory is
used, so that

Cpr = 2 ~ cos?y (3)

based on the reference area wrs? cos®y. Assuming now that
the shock can be fared into the conical shock of angle § cor-
responding to the freestream Mach number and the cone
angle, Eq. (2) is used in the range

0 < r < rrcosy{0.984Chs[(1/5in26) — 1]}042%  (4)
For
r > 77 cosy{0.984Cpr[(1/5in25) — 1]}0-428 )

the shock is extended as a straight line at angle 6. The angle
6 can be obtained” from the equation

M, siné = 4 + 1.01(M. siny — 3.43) 6)

for hypersonic flow.

The results of this correlation can be seen in the Figs, 1-5.
In Figs. 1-3, comparison is made with the results of two Boe-
ing numerical computer programs, one solving for the sub-
sonic-transonic region by the method of Belotserkovskii,?* and
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EXPERIMENT
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Fig. 4. Experimental shock shape; v = 9°, M. = 18.9,
rr = 0.45 in.
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Fig. 5 Experimental shock shape; y = 14°, Mo = 61,
: rr = 0.153 in.

the other solving for the supersonic region by the method of
characteristics.* Both programs are for real air in equi-
librium. The Van Hise correlation also is included in the
figures. Figures 4 and 5 present a comparison with experi-
mental results.>® The present correlation is virtually in-
distinguishable from both the computer program and the
experiment up to at least 12 nose tip radii downstream. The
Van Hise correlation compares most favorably in those cases
when r4/7, is relatively large, so that the major contribution
of nose cone drag comes from the spherical tip. For decreas-
ing values of rp/ry, a larger percentage of the drag comes from
the conical portion of nose cone, and it thus becomes essential
to use the modified correlation presented here. It has been
shown! that even the relatively small variation in shock shape
in Fig. 4 can result in wake length variation on the order of

50%.
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